

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.04.24, the SlowMist security team received the STRX Protocol team's security audit application for STRX

Protocol, developed the audit plan according to the agreement of both parties and the characteristics of the project,

and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

Audit Version:

https://github.com/justlend/strx-protocol

commit: 38a60d393145a0202814eb870191db56637f6787

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1 Coding specification Others Suggestion Acknowledged

NO Title Category Level Status

N2 Gas optimization
Gas Optimization

Audit
Suggestion Acknowledged

N3
Authority transfer

enhancement
Others Suggestion Acknowledged

N4
Missing onlyStrx

modifier
Authority Control
Vulnerability Audit

Suggestion Acknowledged

N5
resourceType
missing check

Design Logic Audit Suggestion Acknowledged

N6
Business logic is

unclear
Design Logic Audit Suggestion Acknowledged

N7 Business logic issue Design Logic Audit Suggestion Acknowledged

N8 Code optimization Others Suggestion Acknowledged

N9
Excessive authority

issue
Authority Control
Vulnerability Audit

Medium Acknowledged

N10
init lacks parameter

validity checking
Others Suggestion Acknowledged

N11
Lack of access

control
Authority Control
Vulnerability Audit

Suggestion Acknowledged

4 Code Overview

4.1 Contracts Description

The main network address of the contract is as follows:

STRXG1: TSe1pcCnU1tLdg69JvbFmQirjKwTbxbPrG

STRXProxy: TU3kjFuhtEo42tsCBtfYUAZxoqQ4yuSLQ5

MarketG1: TNoHbPuBQrVanVf9qxUsSvHdB2eDkeDAKD

MarketProxy: TU2MJ5Veik1LRAgjeSzEdvmDYx7mefJZvd

VoteManager: TBx8avtCuPiuYCQfRq97JLpmdnxr2hWR9L

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

AdminProxy

Function Name Visibility Mutability Modifiers

<Fallback> External Payable -

_setPendingImplementation Public Can Modify State -

_acceptImplementation Public Can Modify State -

_setPendingAdmin Public Can Modify State -

_acceptAdmin Public Can Modify State -

BaseSTRX

Function Name Visibility Mutability Modifiers

approve Public Can Modify State -

decreaseAllowance Public Can Modify State -

increaseAllowance Public Can Modify State -

transfer Public Can Modify State -

transferFrom Public Can Modify State -

allowance Public - -

balanceOf Public - -

totalUnderlying Public - -

totalSupply Public - -

exchangeRate Public - -

decimals External - -

name External - -

symbol External - -

BaseSTRX

_approve Internal Can Modify State -

_doTransferOut Internal Can Modify State -

_transfer Internal Can Modify State -

depositInternal Internal Can Modify State -

updateExchangeRate Internal Can Modify State -

withdrawInternal Internal Can Modify State -

withdrawExactInternal Internal Can Modify State -

updateTokensAndDeposits Private Can Modify State -

STRXG1

Function Name Visibility Mutability Modifiers

<Receive Ether> External Payable -

<Fallback> External Payable -

init External Payable onlyAdmin

_become External
Can Modify

State
-

deposit External Payable -

withdraw External
Can Modify

State
_updateIndex

withdrawExact External
Can Modify

State
_updateIndex

claim External
Can Modify

State
-

claimAll External
Can Modify

State
-

voteSrs External
Can Modify

State
onlyVoteOperator

receiveRental External Payable onlyMarket

STRXG1

marketDelegateResource External
Can Modify

State
onlyMarket

marketUndelegateResource External
Can Modify

State
onlyMarket

unfreezeBalance External
Can Modify

State
_updateIndex

freezeBalance External
Can Modify

State
_updateIndex

updateIndex External
Can Modify

State
_updateIndex

setReserveFactors External
Can Modify

State
onlyAdmin _updateIndex

setReserveAdmin External
Can Modify

State
onlyAdmin

setVoteOperator External
Can Modify

State
onlyVoteOperatorOrAdmi

n

setMinFreezeAmount External
Can Modify

State
onlyVoteOperator

setMaxAmountForEnergy External
Can Modify

State
onlyAdmin

claimReserves External
Can Modify

State
onlyReserveAdmin

reservePayBadDebt External
Can Modify

State
onlyReserveAdmin

balanceOfUnderlying External
Can Modify

State
_updateIndex

balanceStructure External
Can Modify

State
_updateIndex

assetsStructure External
Can Modify

State
_updateIndex

supportsInterface Public - -

viewBalanceOfUnderlying Public - -

viewBalanceStructure Public - -

viewAssetsStructure Public - -

STRXG1

totalDelegated Public - -

totalUnfreezable Public - -

totalFrozen Public - -

totalFrozenOfType Public - -

getBalanceToUnfreeze Public - -

availableUnfreezeSize Public - -

getUnfreezeDelayDays Public - -

getVoteRewardAmount Public - -

_deposit Internal
Can Modify

State
_updateIndex

_settleIncome Internal
Can Modify

State
-

_addReserves Internal
Can Modify

State
-

_updateWithdrawList Internal
Can Modify

State
-

_withdrawRewardRentalAndUpdateIn
dex

Internal
Can Modify

State
-

_updateClaimableAndTransfer Internal
Can Modify

State
-

_freezeBalance Private
Can Modify

State
-

_unfreezeBalance Private
Can Modify

State
-

_getFreezeAmountForResourceType Private - -

_getUnfreezeResourceType Private - -

STRXV1Storage

Function Name Visibility Mutability Modifiers

STRXV1Storage

claimable Public - -

withdrawal Public - -

balanceToUnfreeze Public - -

balanceToFreeze Public - -

setClaimable Internal Can Modify State -

setBalanceToUnfreeze Internal Can Modify State -

setBalanceToFreeze Internal Can Modify State -

setWithdrawal Internal Can Modify State -

JumpRateModel

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

replaceOwner External Can Modify State onlyOwner

renounceOwner External Can Modify State onlyOwner

updateJumpRateModel External Can Modify State onlyOwner

getRentalRate External - -

updateJumpRateModelInternal Internal Can Modify State -

utilizationRate Internal - -

MarketG1

Function Name Visibility Mutability Modifiers

init External
Can Modify

State
onlyAdmin

_become External
Can Modify

State
-

MarketG1

claimRental External
Can Modify

State
onlyStrx

repayBadDebt External Payable -

rentResource External Payable
onlyRentNotPaused

onlyBandwidthOrEnergy canRent

returnResource External
Can Modify

State
-

returnResourceByReceive
r

External
Can Modify

State
-

liquidate External
Can Modify

State
onlyBandwidthOrEnergy

forceLiquidate External
Can Modify

State
onlyBandwidthOrEnergy

badDebtGap External - -

getRentInfo External - onlyBandwidthOrEnergy

supportsResourceType External - -

supportsInterface Public - -

setMaxRentalScaleLimit Public
Can Modify

State
onlyAdmin

setBandwidthRentalRate
Model

Public
Can Modify

State
onlyAdmin

setEnergyRentalRateMod
el

Public
Can Modify

State
onlyAdmin

setRateModel Public
Can Modify

State
onlyAdmin onlyBandwidthOrEnergy

setMinFee Public
Can Modify

State
onlyAdmin

setFeeRatio Public
Can Modify

State
onlyAdmin

setRentPaused Public
Can Modify

State
onlyAdmin onlyBandwidthOrEnergy

setUsageChargeRatio Public
Can Modify

State
onlyAdmin

MarketG1

updateRentRate Public
Can Modify

State
-

totalDelegated Public - -

totalDelegatedOfType Public - -

totalUnfreezable Public - -

totalUnfreezableOfType Public - -

totalFrozen Public - -

totalFrozenOfType Public - -

delegatableOfType Public - -

maxRentableOfType Public - -

_liquidateRate Public - -

_stableRate Public - -

_rentalRate Public - -

_returnResource Internal
Can Modify

State
onlyBandwidthOrEnergy canReturn

_internalRepayForLiquidat
e

Internal
Can Modify

State
-

_internalRepayForReturn Internal
Can Modify

State
-

_updateMarketAndSettle Internal
Can Modify

State
-

_updateMarketWithRentU
ser

Internal
Can Modify

State
-

_updateRentIndexAndCal
cIncome

Internal
Can Modify

State
-

_updateUserRentIndex Internal
Can Modify

State
-

_settleIncome Internal
Can Modify

State
-

MarketG1

_payBadDebt Internal
Can Modify

State
-

_doTransferOut Internal
Can Modify

State
-

_updateRentRate Internal
Can Modify

State
-

_setRateModel Internal
Can Modify

State
-

_calculateFee Internal - -

_liquidateCheck Private - -

MarketProxy

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

MarketV1Storage

Function Name Visibility Mutability Modifiers

setRental Internal Can Modify State -

rentals Public - -

TRC165

Function Name Visibility Mutability Modifiers

supportsInterface Public - -

4.3 Vulnerability Summary

[N1] [Suggestion] Coding specification

Category: Others

Content

Functions with visibility for Public and External are named with the beginning of _.

Code location:

AdminProxy._setPendingImplementation

AdminProxy._acceptImplementation

AdminProxy._setPendingAdmin

AdminProxy._acceptAdmin

MarketG1._become

MarketG1._liquidateRate

MarketG1._stableRate

MarketG1._rentalRate

STRXG1._become

Functions of the Internal and Private types do not start with _.

Code location:

BaseSTRX.depositInternal(Internal)

BaseSTRX.updateExchangeRate(Internal)

BaseSTRX.withdrawInternal(Internal)

BaseSTRX.withdrawExactInternal(Internal)

BaseSTRX.updateTokensAndDeposits(Private)

JumpRateModel.updateJumpRateModelInternal(Internal)

JumpRateModel.utilizationRate(Internal)

MarketV1Storage.setRental(Internal)

STRXV1Storage.setClaimable(Internal)

STRXV1Storage.setBalanceToUnfreeze(Internal)

STRXV1Storage.setBalanceToFreeze(Internal)

STRXV1Storage.setWithdrawal(Internal)

Solution

It is recommended that the beginning of _ is used for functions of the internal and private types.

Status

Acknowledged

[N2] [Suggestion] Gas optimization

Category: Gas Optimization Audit

Content

address(0) is a black hole address, nobody can have an address(0), so it looks like you can judge the msg.sender

without having to judge the address(0).

Code location: strx-protocol/src/AdminProxy.sol#L65

function _acceptImplementation() public {

 // Check caller is pendingImplementation and pendingImplementation ≠

address(0)

 require(msg.sender == pendingImplementation && pendingImplementation !=

address(0),

 "ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK");

 // Save current values for inclusion in log

 address oldImplementation = implementation;

 address oldPendingImplementation = pendingImplementation;

 implementation = pendingImplementation;

 pendingImplementation = address(0);

 emit NewImplementation(oldImplementation, implementation);

 emit NewPendingImplementation(oldPendingImplementation,

pendingImplementation);

 }

Code location: strx-protocol/src/AdminProxy.sol#L106

function _acceptAdmin() public {

 // Check caller is pendingAdmin and pendingAdmin ≠ address(0)

 require(msg.sender == pendingAdmin && pendingAdmin != address(0),

"ACCEPT_ADMIN_PENDING_ADMIN_CHECK");

 // Save current values for inclusion in log

 address oldAdmin = admin;

 address oldPendingAdmin = pendingAdmin;

 // Store admin with value pendingAdmin

 admin = pendingAdmin;

 // Clear the pending value

 pendingAdmin = address(0);

 emit NewAdmin(oldAdmin, admin);

 emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);

 }

Solution

It is recommended to delete unnecessary code to optimize Gas.

Status

Acknowledged; The project team responded that the reason they judge here is to avoid the collision of the private

key of the 0x0 address with a very small probability, because the default (empty) pendingAdmin and

pendingImplementation are 0x0 addresses.

[N3] [Suggestion] Authority transfer enhancement

Category: Others

Content

The owner does not adopt the pending and access processes. If the owner is incorrectly set, the owner permission

will be lost.

Code location: strx-protocol/src/JumpRateModel.sol

function replaceOwner(address newOwner) external onlyOwner {

 require(newOwner != address(0), "new owner is zero address");

 address oldOwner = owner;

 owner = newOwner;

 emit OwnerUpdated(oldOwner, newOwner);

 }

Solution

It is recommended to adopt the pending and access processes. Only the new owner accepts the permissions to

transfer.

Status

Acknowledged; The project team responded that the authority would not be lost because the JumpRateModel

address can be modified in the Market, so they designed to replace the owner with the JumpRateModel in one step

to simplify the operation.No adjustment was needed.

[N4] [Suggestion] Missing onlyStrx modifier

Category: Authority Control Vulnerability Audit

Content

The MarketG1.repayBadDebt function is only called by the STRXG1.reservePayBadDebt function, but

MarketG1.repayBadDebt does not use the onlyStrx modifier for authentication, and the business design needs to be

confirmed with the developer.

Code location: strx-protocol/src/MarketG1.sol

function repayBadDebt() external payable {

 require(msg.value > 0, "msg.value is zero");

 uint256 repay = badDebt - badDebtCovered;

 if (repay > msg.value) {

 repay = msg.value;

 }

 if (repay > 0) {

 uint256 covered = badDebtCovered;

 covered += repay;

 badDebtCovered = covered;

 emit BadDebtCovered(repay, covered);

 }

 if (msg.value > repay) {

 payable(msg.sender).transfer(msg.value - repay);

 }

 }

Code location: strx-protocol/src/STRXG1.sol

 function reservePayBadDebt(uint256 amount) external onlyReserveAdmin {

 require(amount > 0, "pay badDebt amount should be larger than 0");

 require(address(market) != address(0), "market is empty");

 uint256 totalReserves = reserves;

 uint256 claimed = claimedReserves;

 require(totalReserves >= claimed + amount, "reserves not enough");

 uint256 gap = market.badDebtGap();

 require(gap > 0, "badDebt gap is zero");

 if (amount > gap) {

 amount = gap;

 }

 claimed += amount;

 claimedReserves = claimed;

 market.repayBadDebt{value: amount}();

 emit ReservesClaimed(msg.sender, true, amount, claimed);

 }

Solution

It is recommended to clarify the call logic of the business and add onlyStrx modifier to MarketG1.repayBadDebt.

Status

Acknowledged; The project team responded that this was designed this way because the MarketG1.repayBadDebt

method supports everyone to call to repay bad debts for the Market, not limited to STRX. Calling this method to

repay bad debts in the market does not make a profit, but only provides the possibility of repaying bad debts from

assets other than strx's reserves.

[N5] [Suggestion] resourceType missing check

Category: Design Logic Audit

Content

The value of resourceType was not checked, the contract code allows a resourceType of 0 or 1.

Code location: strx-protocol/src/MarketG1.sol

function totalDelegatedOfType(uint256 resourceType) public view returns (uint256) {

 return address(strx).totalDelegatedResource(resourceType);

 }

Code location: strx-protocol/src/MarketG1.sol

 function delegatableOfType(uint256 resourceType) public view returns (uint256) {

 return address(strx).delegatableResource(resourceType);

 }

Code location: strx-protocol/src/MarketG1.sol

 function totalUnfreezableOfType(uint256 resourceType) public view returns (uint256)

{

 return address(strx).unfreezableBalanceV2(resourceType);

 }

Code location: strx-protocol/src/MarketG1.sol

function maxRentableOfType(uint256 resourceType) public view returns (uint256) {

 uint256 delegatedResource = totalDelegated();

 uint256 undelegatedResource = totalUnfreezable();

 uint256 toUnfreeze = strx.getBalanceToUnfreeze();

 uint256 _budget = (delegatedResource + undelegatedResource - toUnfreeze) *

maxRentalScaleLimit / SCALE;

 if (_budget <= delegatedResource) {

 return 0;

 }

 _budget -= delegatedResource;

 uint256 _delegatable = address(strx).delegatableResource(resourceType);

 return _delegatable < _budget ? _delegatable : _budget;

 }

Code location: strx-protocol/src/MarketG1.sol

function _liquidateRate(uint256 resourceType) public view returns (uint256) {

 uint256 stableRate = _stableRate(resourceType);

 uint256 currentRate = _rentalRate(0, resourceType);

 return stableRate > currentRate ? currentRate : stableRate;

 }

 function _stableRate(uint256 resourceType) public view returns (uint256) {

 RentRate memory _futureRentRate = futureRentRate[resourceType];

 if (block.timestamp >= uint256(_futureRentRate.timestamp)) {

 return uint256(_futureRentRate.rate);

 }

 RentRate memory _initialRentRate = initialRentRate[resourceType];

 uint256 sums = uint256(_initialRentRate.rate) *

(uint256(_futureRentRate.timestamp) - block.timestamp)

 + uint256(_futureRentRate.rate) * (block.timestamp -

uint256(_initialRentRate.timestamp));

 uint256 time_interval = uint256(_futureRentRate.timestamp -

_initialRentRate.timestamp);

 return sums / time_interval;

 }

 function _rentalRate(uint256 amount, uint256 resourceType) public view returns

(uint256) {

 IRateModel rateModel = rentalRateModels[resourceType];

 if (address(rateModel) == address(0x00)) {

 return 0;

 }

 return rateModel.getRentalRate(

 totalFrozenOfType(resourceType), totalDelegatedOfType(resourceType) +

amount);

 }

Solution

It is recommended to limit the value of resourceType to 0 or 1.

Error data will be returned if the resourceType passed in when these functions are called uses a value other than 0 or

1.

Status

Acknowledged; The project team responded that the pre-compiled contracts related to resourceType on chain return

0 when encountering the currently non-existent resourceType. The contracts remain in the chain-like mechanism

here, which is reasonable and the contracts neither return any wrong data nor mislead users.

[N6] [Suggestion] Business logic is unclear

Category: Design Logic Audit

Content

The comment of the code indicates that resourceType is 0 or 1, and the logic of onlyBandwidthOrEnergy also allows

resourceType to be 0 or 1, but supportsResourceType only returns true after resourceType == 1.

Code location: strx-protocol/src/MarketG1.sol

 // resourceType: 0 - bandwidth, 1 - energy

 function supportsResourceType(uint256 resourceType) external view returns (bool)

{

 return resourceType == 1;

 }

The onlyBandwidthOrEnergy modifier allows the value of _resourceType to be 0 or 1. But require(_resourceType == 1,

"only energy rent market is implemented"); However, only _resourceType is allowed to be 1. The service logic is not

clear and rentPaused[0] = true; but there is no code to set rentPaused[0] to false

Code location: strx-protocol/src/MarketG1.sol

function setRentPaused(uint256 _resourceType, bool _pause) public onlyAdmin

onlyBandwidthOrEnergy(_resourceType) {

 require(_resourceType == 1, "only energy rent market is implemented");

 rentPaused[_resourceType] = _pause;

 emit RentPaused(_resourceType, _pause);

 }

Code location: strx-protocol/src/MarketG1.sol

function init(

 address _strx,

 IRateModel[2] calldata _rentalRateModels,

 uint256 _maxRentalScaleLimit,

 uint256 _minFee,

 uint256 _feeRatio

)

 external

 onlyAdmin

 {

 require(!initialized, "already initialized");

 require(_strx != address(0), "strx is empty");

 require(_maxRentalScaleLimit <= SCALE, "setMaxRentalScaleLimit: invalid

rental limit");

 strx = ISTRXForMarket(_strx);

 rentalRateModels = _rentalRateModels;

 initialized = true;

 maxRentalScaleLimit = _maxRentalScaleLimit; // 1e18: 100%

 minFee = _minFee; // 200 * 1e6: 200TRX

 feeRatio = _feeRatio; // 1e16: 1%, fee = MAX(minFee, 1% * rentAmount)

 // pause the rent of bandwidth at init

 rentPaused[0] = true;

The initialization is not assigned to liquidateThreshold, and there is no subsequent function to modify the value of

liquidateThreshold, so the default value of liquidateThreshold is 0, which will affect the calculation of the following

functions.This may lead to calculation errors.

Code location: strx-protocol/src/MarketV1Storage.sol

contract MarketV1Storage is AdminStorage {

...

 uint256 public liquidateThreshold;

Code location: strx-protocol/src/MarketG1.sol

function getRentInfo(

 address renter,

 address receiver,

 uint256 resourceType

)

 external

 view

 onlyBandwidthOrEnergy(resourceType)

 returns (uint256, uint256, bool)

 {

 ……

 uint256 oneDayRent = rentInfo.amount * rate * 1 days / SCALE;

 uint256 threshold = rentInfo.amount * rate * liquidateThreshold / SCALE;

 uint256 _fee = _calculateFee(rentInfo.amount);

 if (_securityDeposit <= _fee + oneDayRent + threshold) {

 liquidatable = true;

 }

 return (_securityDeposit, _globalRentIndex, liquidatable);

 }

Code location: strx-protocol/src/MarketG1.sol

function rentResource(

 address receiver,

 uint256 amount,

 uint256 resourceType

)

 external

 payable

 onlyRentNotPaused(resourceType)

 onlyBandwidthOrEnergy(resourceType)

 canRent(receiver, amount, resourceType)

 {

 ……

 uint256 required = rentInfo.amount * rate * (1 days + liquidateThreshold)

/ SCALE + fee;

 require(rentInfo.securityDeposit > required, "resource rent: Not enough

security deposit");

 }

 if (amount > 0) {

 try strx.marketDelegateResource(payable(receiver), amount, resourceType)

{

 } catch {

 revert("resource rent: delegate resource error");

 }

 }

 setRental(msg.sender, receiver, resourceType, rentInfo);

 _updateRentRate(resourceType);

 emit ResourceRented(msg.sender, receiver, resourceType, amount);

 emit RentResource(msg.sender, receiver, amount, resourceType, msg.value,

rentInfo.amount,

 rentInfo.securityDeposit, rentInfo.rentIndex);

 }

Code location: strx-protocol/src/MarketG1.sol

 function _liquidateCheck(

 RentalInfo memory rentInfo,

 uint256 resourceType

)

 private

 view

 {

 require(rentInfo.amount > 0, "liquidate: no resource to liquidate");

 uint256 rate = _liquidateRate(resourceType);

 uint256 oneDayRent = rentInfo.amount * rate * 1 days / SCALE;

 uint256 threshold = rentInfo.amount * rate * liquidateThreshold / SCALE;

 uint256 _fee = _calculateFee(rentInfo.amount);

 require(

 rentInfo.securityDeposit <= _fee + oneDayRent + threshold,

 "liquidate: liquidate condition not met"

);

 }

Solution

It is recommended to clarify the code logic of supportResourceType and setRentPaused, and clarify the specific

business design to ensure that the liquidateThreshold variable is correctly assigned and used correctly.

Status

Acknowledged; The project team responded that supportsResourceType, which describes the resource type

supported by the current contract. Only energy leases are currently open. The project team responded that the rental

function for the bandwidth market is not supported at this stage, so the setRentPaused method also supports the

suspension/opening of energy types. The project team responded that liquidateThreshold is to calculate the reserved

part outside the guaranteed amount of the order. According to the current demand, the reserved part is 0, so the

initial value is 0, and there are no extra-cost gas settings.

[N7] [Suggestion] Business logic issue

Category: Design Logic Audit

Content

require(totalReserves >= claimed + amount, "reserves not enough"); should be placed after if (amount > gap)

{amount = gap;}.

Code location: strx-protocol/src/STRXG1.sol

function reservePayBadDebt(uint256 amount) external onlyReserveAdmin {

 require(amount > 0, "pay badDebt amount should be larger than 0");

 require(address(market) != address(0), "market is empty");

 uint256 totalReserves = reserves;

 uint256 claimed = claimedReserves;

 require(totalReserves >= claimed + amount, "reserves not enough");

 uint256 gap = market.badDebtGap();

 require(gap > 0, "badDebt gap is zero");

 if (amount > gap) {

 amount = gap;

 }

 claimed += amount;

 claimedReserves = claimed;

 market.repayBadDebt{value: amount}();

 emit ReservesClaimed(msg.sender, true, amount, claimed);

 }

Solution

It is recommended to clarify the business logic of the code.

Status

Acknowledged; The project team responded that require(totalReserves >= claimed + amount, "reserves not

enough");

It is to verify whether the input parameter value of ReserveAdmin is legal.

Taking a smaller value from the following two is to pay off the bad debts in full amount. This sequential logic is

relatively clear.

If it is modified, it will cause ReserveAdmin to be confused about the meaning of the incoming parameters because

the input parameters cannot be verified.

[N8] [Suggestion] Code optimization

Category: Others

Content

The updateRentRate function is placed under the admin management functions, but the modifier of onlyAdmin is not

used.

Code location: strx-protocol/src/MarketG1.sol

// -------------------------------- admin management functions ----------------------

 function updateRentRate() public {

 _updateRentRate(0);

 _updateRentRate(1);

 }

Solution

The updateRentRate function seems to allow public calls. It is recommended to remove it from admin management

functions.

Status

Acknowledged; The project team responded that this issue was only related to comments not code, since the

contract has already been deployed, it will not be modified for now.

[N9] [Medium] Excessive authority issue

Category: Authority Control Vulnerability Audit

Content

Admin can set the address of rentalRateModels. If the external contract has not been security audited, or the

external contract is set as a malicious contract, the user's funds may be stolen.

Admin can set the value of minFee, feeRatio, but minFee, feeRatio does not limit the maximum and minimum values.

setMaxRentalScaleLimit function has no event record.

Code location: strx-protocol/src/MarketG1.sol

MarketG1.setMaxRentalScaleLimit

MarketG1.setBandwidthRentalRateModel

MarketG1.setEnergyRentalRateModel

MarketG1.setRateModel

MarketG1.setMinFee

MarketG1.setFeeRatio

The admin can set the values of RentFactor, RewardFactor, _reserveAdmin. There is an issue of excessive

permissions.

Code location: strx-protocol/src/STRXG1.sol

 function setReserveFactors(uint256 _newRentFactor, uint256 _newRewardFactor)

external onlyAdmin _updateIndex {

 require(_newRentFactor <= SCALE, "rent factor exceed scale limit!");

 require(_newRewardFactor <= SCALE, "reward factor exceed scale limit!");

 ReserveFactor memory factor = reserveFactor;

 uint256 oldRentFactor = uint256(factor.rentFactor);

 if (oldRentFactor != _newRentFactor) {

 factor.rentFactor = uint128(_newRentFactor);

 emit RentFactorUpdated(oldRentFactor, _newRentFactor);

 }

 uint256 oldRewardFactor = uint256(factor.rewardFactor);

 if (oldRewardFactor != _newRewardFactor) {

 factor.rewardFactor = uint128(_newRewardFactor);

 emit RewardFactorUpdated(oldRewardFactor, _newRewardFactor);

 }

 reserveFactor = factor;

 }

 function setReserveAdmin(address payable _reserveAdmin) external onlyAdmin {

 address oldReserveAdmin = reserveAdmin;

 reserveAdmin = _reserveAdmin;

 emit ReserveAdminUpdated(oldReserveAdmin, _reserveAdmin);

 }

voteOperator can transfer its permissions to other users without the consent of admin.

Code location: strx-protocol/src/STRXG1.sol

 function setVoteOperator(address _voteOperator) external onlyVoteOperatorOrAdmin

{

 emit VoteOperatorUpdated(voteOperator, _voteOperator);

 voteOperator = _voteOperator;

 }

ReserveAdmin can call claimReserves and reservePayBadDebt functions at will.

Code location: strx-protocol/src/STRXG1.sol

 function claimReserves(uint256 amount) external onlyReserveAdmin {

 require(amount > 0, "claim amount should be larger than 0");

 uint256 totalReserves = reserves;

 uint256 claimed = claimedReserves;

 require(totalReserves >= claimed + amount, "reserves not enough");

 claimed += amount;

 claimedReserves = claimed;

 address payable receiver = reserveAdmin;

 _doTransferOut(receiver, amount);

 emit ReservesClaimed(receiver, false, amount, claimed);

 }

Code location: strx-protocol/src/STRXG1.sol

 function reservePayBadDebt(uint256 amount) external onlyReserveAdmin {

 require(amount > 0, "pay badDebt amount should be larger than 0");

 require(address(market) != address(0), "market is empty");

 uint256 totalReserves = reserves;

 uint256 claimed = claimedReserves;

 require(totalReserves >= claimed + amount, "reserves not enough");

 uint256 gap = market.badDebtGap();

 require(gap > 0, "badDebt gap is zero");

 if (amount > gap) {

 amount = gap;

 }

 claimed += amount;

 claimedReserves = claimed;

 market.repayBadDebt{value: amount}();

 emit ReservesClaimed(msg.sender, true, amount, claimed);

 }

Solution

It is recommended to transfer the authority to the governance contract and use timelock for restrictions, at least

using multi-sign contracts for management.

Status

Acknowledged; The project team responded that ReserveAdmin would be transferred to governance and timelock,

and that VoteOperator permissions are divided through another contract VoteManager (address:

TBx8avtCuPiuYCQfRq97JLpmdnxr2hWR9L). The permission to set voting configurations (including the witness list

and the voting ratio) and replace strx VoteOperator would be transferred to governance and timelock for restriction,

while the operator ability could only vote following the witness list and voting ratio in the VoteManager contract.

[N10] [Suggestion] init lacks parameter validity checking

Category: Others

Content

The init function does not check the address(0) of _reserveAdmin, _voteOperator.

Code location: strx-protocol/src/STRXG1.sol

function init(

 address _market,

 address payable _reserveAdmin,

 address _voteOperator,

 uint256 _rentFactor,

 uint256 _rewardFactor,

 uint256 _maxAmountForEnergy

)

 external

 payable

 onlyAdmin

 {

 require(!initialized, "only initialize once");

 require(msg.value >= ONE_TRX, "init must provide at least 1 TRX");

 initialized = true;

 round = 1;

 uint256 _delayDays = getUnfreezeDelayDays();

 uint256 unfreezeTimeSpan = _delayDays * 1 days / CHAIN_UNFREEZE_MAX_TIMES;

 unfreezeCalmDownTime = block.timestamp + unfreezeTimeSpan;

 ReserveFactor memory factor = ReserveFactor(uint128(_rentFactor),

uint128(_rewardFactor));

 reserveFactor = factor;

 require(_market != address(0), "market can't be empty");

 market = IMarketForSTRX(_market);

 reserveAdmin = _reserveAdmin;

 voteOperator = _voteOperator;

 minFreezeAmount = ONE_TRX;

 maxAmountForEnergy = _maxAmountForEnergy;

 setClaimable(0);

 setWithdrawal(0);

 setBalanceToFreeze(0);

 setBalanceToUnfreeze(0);

 _deposit(address(this), msg.value);

 }

Solution

It is recommended to check whether the parameters are legal during initialization.

Status

Acknowledged

[N11] [Suggestion] Lack of access control

Category: Authority Control Vulnerability Audit

Content

There is no check whether strx or market is a whitelisted address, and no access rights are set. Any user can call the

_become function to the input strx or market parameter, which may be malicious.

Code location: strx-protocol/src/STRXG1.sol

 function _become(IProxy strx) external {

 require(msg.sender == strx.admin(), "only admin can change brains");

 strx._acceptImplementation();

 }

Code location: strx-protocol/src/MarketG1.sol

 function _become(IProxy market) external {

 require(msg.sender == market.admin(), "only admin can change brains");

 market._acceptImplementation();

 }

Solution

It is recommended to add access restrictions such as: only the admin of real strx and market can call the _become

function.

Status

Acknowledged

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002305050001 SlowMist Security Team 2023.04.24 - 2023.05.05 Medium Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 medium risk, and 10 suggestion vulnerabilities. The code has been

deployed to the mainnet.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

