
Security Assessment

Justlend
Apr 8th, 2022

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Financial Models

Findings
GLOBAL-01 : Centralization related risks

GLOBAL-02 : Price oracle feed

GLOBAL-03 : Missing input validation

GLOBAL-04 : Unlocked compiler version declaration

GLOBAL-05 : Proper usage of “public” and “external” type

GLOBAL-06 : Incorrect naming convention utilization

CJC-01 : Misuse of a boolean constant

CJC-02 : Return value not stored

CJC-03 : Boolean equality

CTJ-01 : Checks-Effects-Interactions pattern violations

CTJ-02 : Logical issue of function `exchangeRateStoredInternal()`

GAG-01 : Centralization related risks

POP-01 : Centralization related risks

POP-02 : Logical issue of `setPriceInternal()`

WJS-01 : Centralization related risks

WJS-02 : Vote for Multiple Active Proposals

Appendix

Disclaimer

About

Justlend Security AssessmentJustlend Security Assessment

Summary
This report has been prepared for Justlend to discover issues and vulnerabilities in the source code of the

Justlend project as well as any contract dependencies that were not part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Justlend Security Assessment

Overview

Project Summary

Project Name Justlend

Description Justlend

Platform TRON

Language Solidity

Codebase https://github.com/justlend/justlend-protocol

Commit bed296fc6205658cc5b5ca871f9ac9dd69e303d9

Audit Summary

Delivery Date Apr 08, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability

Level
Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 6 0 0 1 2 1 2

Medium 1 0 0 1 0 0 0

Minor 2 0 0 2 0 0 0

Informational 7 0 0 7 0 0 0

Discussion 0 0 0 0 0 0 0

Justlend Security Assess

https://github.com/justlend/justlend-protocol

Audit Scope

ID File SHA256 Checksum

GAG
Governance/GovernorAlp

ha.sol

3436305f7b6350849565d4af975b6bfb4f9b9c69e58c26684bf8

471e01f0d047

WJS Governance/WJST.sol
01240dcb6aa705c2dd4594bb202f959deeba5f6eda98defc1f38

63fe1452053e

CLL Lens/CompoundLens.sol
3ae696d7bd8c3ff2cfd4afe7d8a2a031360d841635e6807ed0a9

792e638781ca

DSV PriceOracle/DSValue.sol
1cdb0eb5b51c9d85c9c8d01071df5c33c408ca40ae97ae63ebc

d18776827ea19

POP
PriceOracle/PriceOracle.s

ol

9b258a3d95786c123c4904c9c53ac691c8b8e4e0c0a748a943a

82e7cf4337fc7

BJR
BaseJumpRateModelV2.s

ol

bfcea7d2dcd937667063ea6631e14d6e95f3e0b598a49886936f

d30e9bbb0e4d

CDD CDaiDelegate.sol
e0dbb826eb0a0f6032cafce5da66259be8d65a14c5199f8b699c

75348c516939

CEJ CErc20.sol
6e0a3cae739460bb6025f0b4d9365925d4fab71dda9f49ff5f304

d9432cb893f

CED CErc20Delegate.sol
a41571abd99b06c298f121310d9dd51471d436630115e27a24

89bfdc0487bd6c

CEC CErc20Delegator.sol
4293707617b67003d9e9e332bd9032cf53d5b8840d37e19576

58798df25ed214

CEI CErc20Immutable.sol
4adb0a8b5cc3185d9b5382c54411fbd1d942bcec2052963ba9

52da35da4be515

CEK CEther.sol
1b8e3c2ddfed8ce0899e9c95b3a330e3b5bf453eced781f15b7

a3f123c5857c1

Justlend Security Assessment

ID File SHA256 Checksum

CTJ CToken.sol
873f6c80f20303a3ac8d3f44b06382875fe5e698f06f0921d45d9

9c649bc897e

CTI CTokenInterfaces.sol
e606b5b73732c3da65a8815e8ed12e04ffe2e49c8543756f63fb

697511ff98a3

CMJ CarefulMath.sol
2d911545d6c21f79a82c1a6a508f226c3a1bc3d4eb5a483c774

c6fe917cc7471

CJC Comptroller.sol
888f089f77588430baf3b10155d1b28920c93ca69c51ae7aaeee

e59dba2c90b0

CGJ ComptrollerG1.sol
06e11a4fa5b68b62f9c6f1d4bbfc9a4ff77ea0b5f884832471ce6

b755d026929

CGC ComptrollerG2.sol
2d3812ae5ce1bf38be9420550d2380b387c3f739b36a9f90e89e

27e181dbf39b

CIJ ComptrollerInterface.sol
8db2ad9a3d7ded37bf0150e95d4f9c88578e089af5780daaac2

6b9257d3441ea

CSJ ComptrollerStorage.sol
581b9a9eba36a3c22fce0d98bdd5d4057e5bb7db8f013ada048

b1c1eb663eb2e

DAI
DAIInterestRateModelV2.

sol

b1ef496f039beddbe7f9f5dda5b9b04f6deec8e1a198cc67b22d

7cc6f7246cbb

EIP EIP20Interface.sol
001f582fb5cc81d6b86a823d3a1c1b404d913508c0daee16783

c5a0f52f88a6b

EIN
EIP20NonStandardInterfa

ce.sol

989255f54a70a25aba32604f35522dc0a86bfca96bfc1ec31e10

cee01f3d458b

ERJ ErrorReporter.sol
5f330db0d084e8dbb6d3e441e59f228d22e0d5081a6ca92a43b

4bdb73d0d5a20

EJC Exponential.sol
111fb77a19d9df5917e2383fe7241535bfa1bff43e23b566ff791d

2ff1eb8b84

Justlend Security Assessment

ID File SHA256 Checksum

IRM InterestRateModel.sol
e4e42d3ecdbbfd059a74bfc30026bfd829e3c299633d73f376e6

7aba5ba9c8be

JRM JumpRateModel.sol
8d63c94d135d8cc089fe5cf6c32da1ba96168bc27074797c835

bce442145aca2

JRV JumpRateModelV2.sol
442bc6845e48a9bfb4ef2c92824e0215ade8894e8932364c08d

705c2557ae863

MJC Maximillion.sol
fb427af3e7d5087267567ce9ea1b5bf1749c7c4b02d1a45df01d

5815e837d84e

POC PriceOracle.sol
8718a29632d6c196e7f9adeda407bb7431b6942d0b54db7f34c

77984acd5eb0e

POK PriceOracleProxy.sol
83be57183c145e4ba1f519e3ba9641a28356b00f6e07011e99af

9772aeca3e6f

RJC Reservoir.sol
ccc5b7daa6e94557ca9cb504405bf4201dbc2aaad1a95bb3b11

6f491b43bbbd8

SMJ SafeMath.sol
cc214a7b44077774e2eb36e5141c551bfd00bb10e88828cc152

b2dc585f8977e

SPO SimplePriceOracle.sol
ec4b5176ae5872e876c54c1e34c3c66bc590d4c4c466b983a0

a97fd5f85a39d3

TJC Timelock.sol
720770bf02e476b74a9421837e21356a1cb3f50871331dbdf5c

21538a488ab84

UJC Unitroller.sol
5cc30091a4bcfc12775d1dfbb7561fa638a9f8ccde05faaa3d827

fd8f1fe4392

WPI
WhitePaperInterestRateM

odel.sol

c53966c1409252916fc8a6f130ddca1e27f24aee87c7d7175d0f

c58f21246658

Justlend Security Assessment

Financial Models

Financial models of blockchain protocols need to be resilient to attacks. It needs to pass simulations and

verifications to guarantee the security of the overall protocol. Financial models are not in the scope of the

audit.

Justlend Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Centralization related risks
Centralization

/ Privilege
Major Mitigated

GLOBAL-02 Price oracle feed Data Flow Medium Acknowledged

GLOBAL-03 Missing input validation Volatile Code Minor Acknowledged

GLOBAL-04
Unlocked compiler version

declaration

Language

Specific
Informational Acknowledged

GLOBAL-05
Proper usage of “public” and

“external” type
Coding Style Informational Acknowledged

GLOBAL-06
Incorrect naming convention

utilization
Coding Style Informational Acknowledged

CJC-01
Misuse of a boolean

constant
Coding Style Informational Acknowledged

CJC-02 Return value not stored
Gas

Optimization
Informational Acknowledged

CJC-03 Boolean equality
Gas

Optimization
Informational Acknowledged

CTJ-01
Checks-Effects-Interactions

pattern violations
Logical Issue Major Resolved

Justlend Security Assessment

16
Total Issues

Critical 0 (0.00%)

Major 6 (37.50%)

Medium 1 (6.25%)

Minor 2 (12.50%)

Informational 7 (43.75%)

Discussion 0 (0.00%)

ID Title Category Severity Status

CTJ-02

Logical issue of function

exchangeRateStoredInt

ernal()

Logical Issue Major Partially Resolved

GAG-01 Centralization related risks
Centralization

/ Privilege
Major Resolved

POP-01 Centralization related risks
Centralization

/ Privilege
Major Acknowledged

POP-02
Logical issue of

setPriceInternal()
Control Flow Minor Acknowledged

WJS-01 Centralization related risks
Centralization

/ Privilege
Major Mitigated

WJS-02
Vote for Multiple Active

Proposals
Control Flow Informational Acknowledged

Justlend Security Assessment

GLOBAL-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major Global Mitigated

Description

In the contracts CToken/Unitroller/CErc20Delegator , the role admin has the authority over the

following function:

_setComptroller() : change the implementation of Comptroller with any contracts,

_setPendingImplementation()/_acceptImplementation() : change the implementation of

Unitroller with any contracts,

_setImplementation() : change the implementation of CErc20 with any contracts,

Any compromise to the admin account may allow the hacker to take advantage of this and users' assets

may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

Justlend Security Assessment

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged the issue and adopted the Timelock solution to delay-sensitive operations at the

current stage. The CEther , Unitroller and CErc20Delegator contracts have transferred the

ownership to a Timelock contract with a minimal 48 hours delay. And the Timelock contract has transferred

the ownership to a governance contract to increase transparency and user involvement.

The contracts are deployed at
https://tronscan.org/#/contract/TE2RzoSV3wFK99w6J9UnnZ4vLfXYoxvRwP

https://tronscan.org/#/contract/TGjYzgCyPobsNS9n6WcbdLVR9dH7mWqFx7

https://tronscan.org/#/contract/TLjn59xNM7VEK6VZ3VQ8Y1ipxsdsFka5wZ

https://tronscan.org/#/contract/TXJgMdjVX5dKiQaUi9QobwNxtSQaFqccvd

https://tronscan.org/#/contract/TYSHTEq9NFSgst94saeRvt6rAYgWkqMFbj

https://tronscan.org/#/contract/TL5x9MtSnDy537FXKx53yAaHRRNdg9TkkA

https://tronscan.org/#/contract/TSCpzKvJfXHj1HW5jKg9dZA8z9aMxxGLd8

https://tronscan.org/#/contract/TGBr8uh9jBVHJhhkwSJvQN2ZAKzVkxDmno

https://tronscan.org/#/contract/TW3GyD3hYkKwzSGytWwWGXpe2a93zCpRzJ

https://tronscan.org/#/contract/TRg6MnpsFXc82ymUPgf5qbj59ibxiEDWvv

https://tronscan.org/#/contract/TVsKSRgRoMcCp798qqRGesXRfzy2MzRjkR

https://tronscan.org/#/contract/TLeEu311Cbw63BcmMHDgDLu7fnk9fqGcqT

Justlend Security Assessment

https://tronscan.org/#/contract/TE2RzoSV3wFK99w6J9UnnZ4vLfXYoxvRwP
https://tronscan.org/#/contract/TGjYzgCyPobsNS9n6WcbdLVR9dH7mWqFx7
https://tronscan.org/#/contract/TLjn59xNM7VEK6VZ3VQ8Y1ipxsdsFka5wZ
https://tronscan.org/#/contract/TXJgMdjVX5dKiQaUi9QobwNxtSQaFqccvd
https://tronscan.org/#/contract/TYSHTEq9NFSgst94saeRvt6rAYgWkqMFbj
https://tronscan.org/#/contract/TL5x9MtSnDy537FXKx53yAaHRRNdg9TkkA
https://tronscan.org/#/contract/TSCpzKvJfXHj1HW5jKg9dZA8z9aMxxGLd8
https://tronscan.org/#/contract/TGBr8uh9jBVHJhhkwSJvQN2ZAKzVkxDmno
https://tronscan.org/#/contract/TW3GyD3hYkKwzSGytWwWGXpe2a93zCpRzJ
https://tronscan.org/#/contract/TRg6MnpsFXc82ymUPgf5qbj59ibxiEDWvv
https://tronscan.org/#/contract/TVsKSRgRoMcCp798qqRGesXRfzy2MzRjkR
https://tronscan.org/#/contract/TLeEu311Cbw63BcmMHDgDLu7fnk9fqGcqT

https://tronscan.org/#/contract/TQ2sbnmxtR7jrNk4nxz2A8f9sneCqmk6SB

https://tronscan.org/#/contract/TWQhCXaWz4eHK4Kd1ErSDHjMFPoPc9czts

https://tronscan.org/#/contract/TV4WWBqBfn1kd4KmpYeSJpVAfybfrxEN9L

https://tronscan.org/#/contract/TUY54PVeH6WCcYCd6ZXXoBDsHytN9V5PXt

https://tronscan.org/#/contract/TLkUdtDBLMfJdXni2iTa4u2DKM53XmDJHi

https://tronscan.org/#/contract/TFpPyDCKvNFgos3g3WVsAqMrdqhB81JXHE

https://tronscan.org/#/contract/TPXDpkg9e3eZzxqxAUyke9S4z4pGJBJw9e

https://tronscan.org/#/contract/TM82erAZJSP7NKc17JdTnzVC8WKJHismWB

https://tronscan.org/#/contract/TSXv71Fy5XdL3Rh2QfBoUu3NAaM4sMif8R

https://tronscan.org/#/contract/THbrSjDsDA2KJRxx8K73tN7vLgaXSUNQFk

https://tronscan.org/#/contract/TNSBA6KvSvMoTqQcEgpVK7VhHT3z7wifxy

https://tronscan.org/#/contract/THQY8YX19jLFSFg1xhthM5wb7xZvKLCzgq

https://tronscan.org/#/contract/TR7BUFRQeq1w5jAZf1FKx85SHuX6PfMqsV

https://tronscan.org/#/contract/TQBvTVisiceDvsQVbLbcYyWQGWP7wtaQnc

The admin of contracts CEther , Unitroller and CErc20Delegator is a Timelock contract, which is

deployed at https://tronscan.org/#/contract/TRWNvb15NmfNKNLhQpxefFz7cNjrYjEw7x .

The admin of contract Timelock is a governance contract, which is deployed at

https://tronscan.org/#/contract/TH1SVVVU9NF1ans3CRBCJ5kW2yvn4sHP9b .

Justlend Security Assessment

https://tronscan.org/#/contract/TQ2sbnmxtR7jrNk4nxz2A8f9sneCqmk6SB
https://tronscan.org/#/contract/TWQhCXaWz4eHK4Kd1ErSDHjMFPoPc9czts
https://tronscan.org/#/contract/TV4WWBqBfn1kd4KmpYeSJpVAfybfrxEN9L
https://tronscan.org/#/contract/TUY54PVeH6WCcYCd6ZXXoBDsHytN9V5PXt
https://tronscan.org/#/contract/TLkUdtDBLMfJdXni2iTa4u2DKM53XmDJHi
https://tronscan.org/#/contract/TFpPyDCKvNFgos3g3WVsAqMrdqhB81JXHE
https://tronscan.org/#/contract/TPXDpkg9e3eZzxqxAUyke9S4z4pGJBJw9e
https://tronscan.org/#/contract/TM82erAZJSP7NKc17JdTnzVC8WKJHismWB
https://tronscan.org/#/contract/TSXv71Fy5XdL3Rh2QfBoUu3NAaM4sMif8R
https://tronscan.org/#/contract/THbrSjDsDA2KJRxx8K73tN7vLgaXSUNQFk
https://tronscan.org/#/contract/TNSBA6KvSvMoTqQcEgpVK7VhHT3z7wifxy
https://tronscan.org/#/contract/THQY8YX19jLFSFg1xhthM5wb7xZvKLCzgq
https://tronscan.org/#/contract/TR7BUFRQeq1w5jAZf1FKx85SHuX6PfMqsV
https://tronscan.org/#/contract/TQBvTVisiceDvsQVbLbcYyWQGWP7wtaQnc

GLOBAL-02 | Price Oracle Feed

Category Severity Location Status

Data Flow Medium Global Acknowledged

Description

A serious issue was caused by Compound’s centralized oracle solution which pulls market data from only

a single exchange, Coinbase, with Uniswap TWAP used as a backstop.

Using Uniswap TWAP as a backstop is better than no backstop in this situation, but it introduces a false

sense of security as it too can trivially be manipulated (as we saw during this event).

Recommendation

We recommend using Chainlink as the price oracle.

Alleviation

The team acknowledged this issue and they stated:

"They will use the median feed of WinkLink, SunSwapV1, SunSwapV2, Binance, Coingecko,

CoinMarketCap as the price source for price feed. The price can only be offset by ±10% at most within 30

minutes. They will use TWAP price as a backstop in the future."

Justlend Security Assessment

GLOBAL-03 | Missing Input Validation

Category Severity Location Status

Volatile Code Minor Global Acknowledged

Description

The given input is missing the check for the non-zero address.

For example,

contract Comptroller : newPauseGuardian in function _setPauseGuardian() ,

contract CToken : newPendingAdmin in function _setPendingAdmin() ,

contract Unitroller : newPendingImplementation in function

_setPendingImplementation() , newPendingAdmin in function _setPendingAdmin()

Recommendation

We recommend adding the check for the passed-in values to prevent unexpected error.

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

GLOBAL-04 | Unlocked Compiler Version Declaration

Category Severity Location Status

Language Specific Informational Global Acknowledged

Description

The compiler version utilized throughout the project uses the "^" prefix specifier, denoting that a compiler

version which is greater than the version will be used to compile the contracts.

Recommendation

It is a general practice to alternatively lock the compiler at a specific version rather than allow a range of

compiler versions to be utilized to avoid compiler-specific bugs and thus be able to identify emerging more

easily. We recommend locking the compiler at the lowest possible version that supports all the capabilities

wished by the codebase. This will ensure that the project utilizes a compiler version that has been in use

for the longest time and as such is less likely to contain yet-undiscovered bugs.

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

GLOBAL-05 | Proper Usage Of “public” And “external” Type

Category Severity Location Status

Coding Style Informational Global Acknowledged

Description

“public” functions that are never called by the contract should be declared “external”. When the inputs are

arrays, “external” functions are more efficient than “public” functions.

Examples:

Functions like :

contract Comptroller : enterMarkets() , getAccountLiquidity() ,

getHypotheticalAccountLiquidity() , _setPriceOracle() , _setPauseGuardian() ,

_setMintPaused() , _setBorrowPaused() , _setTransferPaused() ,

_setSeizePaused() , _become() , claimComp() , getAllMarkets() ,

contract CToken : initialize() , _setInterestRateModel() ,

contract Comp : delegate() , delegateBySig() , getPriorVotes()

contract WJST : deposit() , withdraw() , getPriorVotes() , voteFresh() ,

withdrawVotes() , setGovernorAlpha() , transferOwnership() ,

contract Unitroller : _setPendingImplementation() , _setPendingAdmin() ,

_acceptAdmin() ,

contract CErc20 : initialize() ,

contract CCErc20Delegate : _becomeImplementation() , _resignImplementation() ,

contract CErc20Delegator : borrowBalanceStored() , exchangeRateCurrent() ,

exchangeRateStored() , accrueInterest() , _setComptroller() ,

_setInterestRateModel() ,

contract GovernorAlpha , propose() .

Recommendation

We recommend using the “external” attribute for functions never called from the contract.

Alleviation

The team acknowledged this issue and they stated:

Justlend Security Assessment

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

Justlend Security Assessment

GLOBAL-06 | Incorrect Naming Convention Utilization

Category Severity Location Status

Coding Style Informational Global Acknowledged

Description

Solidity defines a naming convention that should be followed. In general, the following naming conventions

should be utilized in a Solidity file:

Constants should be named with all capital letters with underscores separating words

UPPER_CASE_WITH_UNDERSCORES

refer to https://solidity.readthedocs.io/en/v0.5.17/style-guide.html#naming-conventions

Examples:

Constants like :

contract CTokenStorage : borrowRateMaxMantissa , reserveFactorMaxMantissa ,

contract CTokenInterface : isCToken ,

contract Comptroller : compClaimThreshold , compInitialIndex ,

closeFactorMinMantissa , closeFactorMaxMantissa ,

collateralFactorMaxMantissa , liquidationIncentiveMinMantissa ,

liquidationIncentiveMaxMantissa ,

contract ComptrollerInterface : isComptroller ,

contract Exponential expScale , doubleScale , halfExpScale , mantissaOne ,

contract InterestRateModel : isInterestRateModel ,

contract PriceOracle : isPriceOracle ,

Recommendation

The recommendations outlined here are intended to improve the readability, and thus they are not rules,

but rather guidelines to try and help convey the most information through the names of things.

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

https://solidity.readthedocs.io/en/v0.5.17/style-guide.html#naming-conventions

Justlend Security Assessment

CJC-01 | Misuse Of A Boolean Constant

Category Severity Location Status

Coding Style Informational Comptroller.sol Acknowledged

Description

Boolean constants in code have only a few legitimate uses. Other uses (in complex expressions, as

conditionals) indicate either an error or, most likely, the persistence of faulty code.

For example:

 ifif ((falsefalse)) {{

 maxAssets maxAssets == maxAssets maxAssets;;

 }}

Recommendation

We recommend removing the ineffectual code.

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

CJC-02 | Return Value Not Stored

Category Severity Location Status

Gas Optimization Informational Comptroller.sol: 972 Acknowledged

Description

The return value of an external call is not stored in a local or state variable.

Examples:

functionfunction _supportMarket_supportMarket((CToken cTokenCToken cToken)) externalexternal returnsreturns ((uintuint)) {{

 cToken cToken..isCTokenisCToken(());;

}}

Recommendation

We recommend adding “require” statement for isCToken:

requirerequire((cTokencToken..isCTokenisCToken(());;,,”This ”This isis not a CToken not a CToken contractcontract!!””));;

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

CJC-03 | Boolean Equality

Category Severity Location Status

Gas Optimization Informational Comptroller.sol Acknowledged

Description

Boolean constants can be used directly and do not need to be compared to true or false.

For example:

 ifif ((marketToJoinmarketToJoin..accountMembershipaccountMembership[[borrowerborrower]] ==== truetrue)) {{

 // already joined// already joined

 returnreturn Error Error..NO_ERRORNO_ERROR;;

 }}

Recommendation

We recommend changing it as following:

 ifif ((marketToJoinmarketToJoin..accountMembershipaccountMembership[[borrowerborrower]])) {{

	 	 		 	 	

 }}

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

CTJ-01 | Checks-Effects-Interactions Pattern Violations

Category Severity Location Status

Logical Issue Major CToken.sol Resolved

Description

The following codes in the functions redeemFresh() and borrowFresh() do not meet the Checks-

Effects-Interactions pattern.

704704 doTransferOutdoTransferOut((redeemerredeemer,, vars vars..redeemAmountredeemAmount));;

705705
706706 /* We write previously calculated values into storage *//* We write previously calculated values into storage */

707707 totalSupply totalSupply == vars vars..totalSupplyNewtotalSupplyNew;;

708708 accountTokens accountTokens[[redeemerredeemer]] == vars vars..accountTokensNewaccountTokensNew;;

800800 doTransferOutdoTransferOut((borrowerborrower,, borrowAmount borrowAmount));;

801801
802802 /* We write the previously calculated values into storage *//* We write the previously calculated values into storage */

803803 accountBorrows accountBorrows[[borrowerborrower]]..principal principal == vars vars..accountBorrowsNewaccountBorrowsNew;;

804804 accountBorrows accountBorrows[[borrowerborrower]]..interestIndex interestIndex == borrowIndex borrowIndex;;

805805 totalBorrows totalBorrows == vars vars..totalBorrowsNewtotalBorrowsNew;;

It only has a reentrancy lock as there is no lock at the controller level, only the CToken level.

If the cToken is an ERC777 protocol, the reentrancy can happen in function levels of an ERC777 based

contract, i.e. multiple function calls that are triggered by the hook mechanism of ERC777.

This issue is possible to happen with all compound forks, but Compound is not affected as they do not list

tokens with callback functionality.

Recommendation

We recommend using the Checks-Effects-Interactions pattern and understanding the security limitations of

forking compound.

Alleviation

Justlend Security Assessment

The team heeded our advice and they added a new file CTokenERC777.sol to be used for the ERC777

based contracts in the commit 4d3eed6650311c1dac301d6e35b52670569195c9 .

Justlend Security Assessment

CTJ-02 | Logical Issue Of Function exchangeRateStoredInternal()

Category Severity Location Status

Logical Issue Major CToken.sol: 344 Partially Resolved

Description

In the aforementioned line, the formula for the calculation of exchangeRate is as follows after cToken is

minted:

344344 functionfunction exchangeRateStoredInternalexchangeRateStoredInternal(()) internalinternal viewview returnsreturns
((MathErrorMathError,, uintuint)) {{

345345 uintuint _totalSupply _totalSupply == totalSupply totalSupply;;
346346 ifif ((_totalSupply _totalSupply ==== 00)) {{

347347 /*/*

348348 * If there are no tokens minted: * If there are no tokens minted:

349349 * exchangeRate = initialExchangeRate * exchangeRate = initialExchangeRate

350350 */ */

351351 returnreturn ((MathErrorMathError..NO_ERRORNO_ERROR,, initialExchangeRateMantissa initialExchangeRateMantissa));;

352352 }} elseelse {{

353353 /*/*

354354 * Otherwise: * Otherwise:

355355 * exchangeRate = (totalCash + totalBorrows - * exchangeRate = (totalCash + totalBorrows -
totalReserves) / totalSupplytotalReserves) / totalSupply

356356 */ */

357357 uintuint totalCash totalCash == getCashPriorgetCashPrior(());;

358358 uintuint cashPlusBorrowsMinusReserves cashPlusBorrowsMinusReserves;;

359359 Exp Exp memorymemory exchangeRate exchangeRate;;

360360 MathError mathErr MathError mathErr;;

361361
362362 ((mathErrmathErr,, cashPlusBorrowsMinusReserves cashPlusBorrowsMinusReserves)) ==
addThenSubUIntaddThenSubUInt((totalCashtotalCash,, totalBorrows totalBorrows,, totalReserves totalReserves));;

363363 ifif ((mathErr mathErr !=!= MathError MathError..NO_ERRORNO_ERROR)) {{

364364 returnreturn ((mathErrmathErr,, 00));;

365365 }}

366366
367367 ((mathErrmathErr,, exchangeRate exchangeRate)) ==
getExpgetExp((cashPlusBorrowsMinusReservescashPlusBorrowsMinusReserves,, _totalSupply _totalSupply));;

Justlend Security Assessment

exchangeRate =

​
totalSupply

totalCash + totalBorrows − totalReserves

368368 ifif ((mathErr mathErr !=!= MathError MathError..NO_ERRORNO_ERROR)) {{

369369 returnreturn ((mathErrmathErr,, 00));;

370370 }}

371371
372372 returnreturn ((MathErrorMathError..NO_ERRORNO_ERROR,, exchangeRate exchangeRate..mantissamantissa));;

373373 }}

374374 }}

In solidity, division calculations have truncation problems. The totalSupply will be 1 and

exchangeRate will be much smaller than initialExchangeRate in case the last user redeems

(accountTokens[redeemer] - 1) cToken.

As a result, the exchangeRate would be extremely small.

When the value of exchangeRate is much smaller than initialExchangeRate , the user can mint

cTokens well above normal values, and then the value of exchangeRate will be normal with the interest

generating. In other words, the users can use this arbitrage to take away the underlying tokens in this pool.

For example, the user can mint the amount of 1e8 cToken with one underlying token in case

exchangeRate = 1/1e8 .

Recommendation

We recommend using the following solutions to help mitigate this issue:

1. adding reasonable upper and lower boundaries to replace the return value when the

exchangeRate is un-reasonable big or small,

2. adding a new contract that can only call mint() but can't call redeem() to supply reasonable

amounts of the underlying token to the pool.

Alleviation

The team acknowledged this issue and they stated:

"We will lock up a little bit of the underlying assets in each market to avoid the scenarios mentioned."

Although Compound has the same code issue, we recommend the team take care of it to prevent risks.

These market contracts are deployed at the following addresses:

https://tronscan.io/#/contract/TE2RzoSV3wFK99w6J9UnnZ4vLfXYoxvRwP

https://tronscan.io/#/contract/TXJgMdjVX5dKiQaUi9QobwNxtSQaFqccvd

Justlend Security Assessment

https://tronscan.io/#/contract/TE2RzoSV3wFK99w6J9UnnZ4vLfXYoxvRwP
https://tronscan.io/#/contract/TXJgMdjVX5dKiQaUi9QobwNxtSQaFqccvd

https://tronscan.io/#/contract/TGBr8uh9jBVHJhhkwSJvQN2ZAKzVkxDmno

https://tronscan.io/#/contract/TLeEu311Cbw63BcmMHDgDLu7fnk9fqGcqT

https://tronscan.io/#/contract/TWQhCXaWz4eHK4Kd1ErSDHjMFPoPc9czts

https://tronscan.io/#/contract/TUY54PVeH6WCcYCd6ZXXoBDsHytN9V5PXt

https://tronscan.io/#/contract/TNSBA6KvSvMoTqQcEgpVK7VhHT3z7wifxy

Justlend Security Assessment

https://tronscan.io/#/contract/TGBr8uh9jBVHJhhkwSJvQN2ZAKzVkxDmno
https://tronscan.io/#/contract/TLeEu311Cbw63BcmMHDgDLu7fnk9fqGcqT
https://tronscan.io/#/contract/TWQhCXaWz4eHK4Kd1ErSDHjMFPoPc9czts
https://tronscan.io/#/contract/TUY54PVeH6WCcYCd6ZXXoBDsHytN9V5PXt
https://tronscan.io/#/contract/TNSBA6KvSvMoTqQcEgpVK7VhHT3z7wifxy

GAG-01 | Centralization Related Risks

Category Severity Location Status

Centralization /

Privilege
Major

Governance/GovernorAlpha.sol: 213~226, 295~298, 300

~303, 305~308, 310~313
Resolved

Description

In the contract GovernorAlpha the role guardian has authority over the functions shown in the

diagram below.

cancel() , to cancel the proposal.

__acceptAdmin() , to accept admin of the Timelock contract.

__abdicate() , to renounce guardian .

__queueSetTimelockPendingAdmin() , to queue the transaction for

Timelock.setPendingAdmin() .

__executeSetTimelockPendingAdmin() , to execute the transaction for

Timelock.setPendingAdmin() .

Any compromise to the guardian account may allow the hacker to take advantage of this authority.

Function

State Variables

Function Calls

Function

State Variables

Function Calls

cancel

ProposalState
proposals
msg
guardian
block
wjst
timelock

state_1
sub256_2
getPriorVotes_2
proposalThreshold_0
cancelTransaction_5

msg
guardian
timelock

Justlend Security Assessment

Authenticated Role Function State Variables

Function

State Variables

Function Calls

Function

State Variables

Function Calls

guardian

__acceptAdmin

__abdicate

__queueSetTimelockPendingAdmin

__executeSetTimelockPendingAdmin

acceptAdmin_0

msg
guardian

msg
guardian
timelock
abi

encode_1
queueTransaction_5

msg
guardian
timelock
abi

encode_1
executeTransaction_5

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Justlend Security Assessment

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team heeded our advice and renounced the role guardian to zero address to resolve this issue.

Justlend Security Assessment

POP-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major PriceOracle/PriceOracle.sol Acknowledged

Description

In the contracts PriceOracle , the role anchorAdmin has the authority over the following function:

_setPendingAnchor() : set the anchor price for an asset,

_setPaused() : pause or resume the market,

Any compromise to the anchorAdmin account may allow the hacker to take advantage of this and users'

assets may suffer loss.

In the contracts PriceOracle , the role poster has the authority over the following function:

setPrice() : set price for an asset,

setPrices() : set prices for a variable number of assets

Any compromise to the poster account may allow the hacker to take advantage of this and users' assets

may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Justlend Security Assessment

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated:

"In Compound's current PriceOracle, only authorized addresses can submit prices. In JustLend, they use

the poster role to submit prices.

In the same way, Compound currently retains the role of anchorAdmin to intervene in feeding prices in

the event of significant price deviations. They also retain the role of anchorAdmin for the same purpose

in JustLend, and they will upgrade this role to multi-signature in the future."

Justlend Security Assessment

POP-02 | Logical Issue Of setPriceInternal()

Category Severity Location Status

Control Flow Minor PriceOracle/PriceOracle.sol: 746 Acknowledged

Description

In the function setPriceInternal() , it will not save the posted price when it exceeds the maximum

swing(currently: 10%). So it cannot guarantee that the posted price is between the price - max swing

and price + max swing , and the posted price could be changed to the max price when it exceeds the

max swing. The real asset price may exceed the maximum swing.

760760 ifif ((localVarslocalVars..pendingAnchorMantissa pendingAnchorMantissa !=!= 00)) {{

761761 		 // let's explicitly set to 0 rather than relying on default of// let's explicitly set to 0 rather than relying on default of

declarationdeclaration

762762 	 localVars	 localVars..anchorPeriod anchorPeriod == 00;;

763763 	 localVars	 localVars..anchorPrice anchorPrice == ExpExp(({{mantissa mantissa ::

localVarslocalVars..pendingAnchorMantissapendingAnchorMantissa}}));;

764764
765765 		 // Verify movement is within max swing of pending anchor (currently:// Verify movement is within max swing of pending anchor (currently:

10%)10%)

766766 		 ((errerr,, localVars localVars..swingswing)) == calculateSwingcalculateSwing((localVarslocalVars..anchorPriceanchorPrice,,

localVarslocalVars..priceprice));;

767767 		 ifif ((err err !=!= Error Error..NO_ERRORNO_ERROR)) {{

768768 	 		 	 returnreturn failOracleWithDetailsfailOracleWithDetails((assetasset,,

OracleErrorOracleError..FAILED_TO_SET_PRICEFAILED_TO_SET_PRICE,,
OracleFailureInfoOracleFailureInfo..SET_PRICE_CALCULATE_SWINGSET_PRICE_CALCULATE_SWING,, uintuint((errerr))));;

769769 		 }}

770770
771771 		 // Fail when swing > maxSwing// Fail when swing > maxSwing

772772 		 ifif ((greaterThanExpgreaterThanExp((localVarslocalVars..swingswing,, maxSwing maxSwing)))) {{

773773 	 		 	 returnreturn failOracleWithDetailsfailOracleWithDetails((assetasset,,

OracleErrorOracleError..FAILED_TO_SET_PRICEFAILED_TO_SET_PRICE,,
OracleFailureInfoOracleFailureInfo..SET_PRICE_MAX_SWING_CHECKSET_PRICE_MAX_SWING_CHECK,, localVars localVars..swingswing..mantissamantissa));;

774774 		 }}

775775 }} elseelse {{

776776 	 localVars	 localVars..anchorPeriod anchorPeriod == anchors anchors[[assetasset]]..periodperiod;;

777777 	 localVars	 localVars..anchorPrice anchorPrice == ExpExp(({{mantissa mantissa ::

anchorsanchors[[assetasset]]..priceMantissapriceMantissa}}));;

778778
779779 		 ifif ((localVarslocalVars..anchorPeriod anchorPeriod !=!= 00)) {{

Justlend Security Assessment

780780 	 		 	 ((errerr,, localVars localVars..priceCappedpriceCapped,, localVars localVars..priceprice)) ==
capToMaxcapToMax((localVarslocalVars..anchorPriceanchorPrice,, localVars localVars..priceprice));;

781781 	 		 	 ifif ((err err !=!= Error Error..NO_ERRORNO_ERROR)) {{

782782 	 	 		 	 	 returnreturn failOracleWithDetailsfailOracleWithDetails((assetasset,,

OracleErrorOracleError..FAILED_TO_SET_PRICEFAILED_TO_SET_PRICE,, OracleFailureInfo OracleFailureInfo..SET_PRICE_CAP_TO_MAXSET_PRICE_CAP_TO_MAX,,
uintuint((errerr))));;

783783 	 		 	 }}

784784 	 		 	 ifif ((localVarslocalVars..priceCappedpriceCapped)) {{

785785 	 	 		 	 	 // save for use in log// save for use in log

786786 	 	 	 localVars	 	 	 localVars..cappingAnchorPriceMantissa cappingAnchorPriceMantissa ==

localVarslocalVars..anchorPriceanchorPrice..mantissamantissa;;

787787 	 		 	 }}

788788 		 }} elseelse {{

789789 	 		 	 // Setting first price. Accept as is (already assigned above// Setting first price. Accept as is (already assigned above

from requestedPriceMantissa) and use as anchorfrom requestedPriceMantissa) and use as anchor

790790 	 	 localVars	 	 localVars..anchorPrice anchorPrice == ExpExp(({{mantissa mantissa ::

requestedPriceMantissarequestedPriceMantissa}}));;
791791 		 }}

792792 }}

Recommendation

We would like the team provides more details for the control flow of price oracle.

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.

In addition, the 30-minute fluctuation of only 10% up or down is more beneficial to the safety of the user's

assets. This is because it keeps the price relatively stable and avoids unnecessary blowouts when the real

price fluctuates sharply for a short period of time."

Justlend Security Assessment

WJS-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major Governance/WJST.sol: 194~196, 198~202 Mitigated

Description

In the contract WJST the role _owner has authority over the functions shown in the diagram below.

setGovernorAlpha() , to set the GovernorAlphaInterface contract.

transferOwnership() , to transfer ownership to another account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority.

Authenticated Role

Function

State Variables

Function Calls

Function State Variables
_owner

setGovernorAlpha

transferOwnership

governorAlpha

GovernorAlphaInterface_1

_owner

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Justlend Security Assessment

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged the issue and adopted the Timelock solution to delay-sensitive operations at the

current stage. The WJST contract has transferred the ownership to a Timelock contract with a minimal 48

hours delay. And the Timelock contract has transferred the ownership to a governance contract to increase

transparency and user involvement.

The contract WJST is deployed at

https://tronscan.org/#/contract/TCczUFrX1u4v1mzjBVXsiVyehj1vCaNxDt .

Justlend Security Assessment

The admin of contract WJST is a Timelock contract, which is deployed at

https://tronscan.org/#/contract/TRWNvb15NmfNKNLhQpxefFz7cNjrYjEw7x .

The admin of contract Timelock is a governance contract, which is deployed at

https://tronscan.org/#/contract/TH1SVVVU9NF1ans3CRBCJ5kW2yvn4sHP9b .

Justlend Security Assessment

WJS-02 | Vote For Multiple Active Proposals

Category Severity Location Status

Control Flow Informational Governance/WJST.sol: 109 Acknowledged

Description

The users will deposit JST token to mint WJST . They need to lock WJST token to the WJST contract to

vote for a proposal. If there are multiple active proposals, the user's votes are locked in the voted proposal,

but cannot vote for the others.

Recommendation

We recommend stating for this.

Alleviation

The team acknowledged this issue and they stated:

"The impact of this problem is minimal. Given the contract has been deployed, it will not be modified for

now.“

Justlend Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a

struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Justlend Security Assessment

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Justlend Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Justlend Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Justlend Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Justlend Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Justlend Security Assessment

